Inhibition of phorbol ester-induced monocytic differentiation and c-fms gene expression by dexamethasone: potential involvement of arachidonic acid metabolites.
نویسندگان
چکیده
The treatment of human U-937 leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with induction of monocytic differentiation. However, the signaling pathways responsible for induction of the differentiated monocytic phenotype remain unclear. The present studies demonstrate that dexamethasone blocks TPA-induced U-937 cell growth inhibition, adherence, and alpha-naphthyl acetate esterase staining. The results also demonstrate that dexamethasone inhibits the appearance of c-fms transcripts associated with TPA treatment. Run-on transcription assays demonstrated that the c-fms gene is transcriptionally active in uninduced U-937 cells and that the rate of transcription is unchanged after dexamethasone and/or TPA treatment. These findings indicated that TPA increases c-fms expression by a dexamethasone-sensitive posttranscriptional mechanism. Treatment of U-937 cells with TPA was also associated with stimulation of arachidonic acid metabolism. Furthermore, dexamethasone, an inhibitor of phospholipase A2 activity, blocked TPA-induced increases in arachidonic acid release. These findings suggested that TPA may regulate certain features of monocytic differentiation, such as c-fms gene expression, through the formation of arachidonic acid metabolites. Indomethacin, an inhibitor of cyclooxygenase, had no detectable effect on c-fms gene expression. However, the cyclooxygenase metabolite, prostaglandin E2, inhibited the TPA-induced increases in c-fms mRNA levels. Taken together, the results indicate that TPA regulates c-fms gene expression by a dexamethasone-sensitive mechanism and that c-fms mRNA levels are controlled by metabolites of the arachidonic acid pathway.
منابع مشابه
Phospholipase C activates protein kinase C and induces monocytic differentiation of HL-60 cells.
Phospholipase C (PLC)-mediated hydrolysis of membrane phospholipids results in the production of diacylglycerol, inositol phosphates, and choline metabolites. Inositol triphosphate increases calcium levels, while diacylglycerol activates protein kinase C. The present studies demonstrate that exogenous PLC generates inositol phosphates, releases choline metabolites, and activates protein kinase ...
متن کاملBryostatin 1 activates protein kinase C and induces monocytic differentiation of HL-60 cells.
Phorbol esters induce the human HL-60 promyelocytic cell line to differentiate along a monocytic pathway. This induction of differentiation may involve phorbol ester-induced activation of the phospholipid- and calcium-dependent protein kinase C. Bryostatin 1, a macrocyclic lactone, has been shown to compete with phorbol esters for binding to protein kinase C. We have confirmed that bryostatin 1...
متن کاملIntegrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1.
The precise signals responsible for differentiation of blood-borne monocytes into tissue macrophages are incompletely defined. "Outside-in" signaling by integrins has been implicated in modulation of gene expression that affects cellular differentiation. Herein, using differential display PCR, we have cloned an 85-kDa forkhead transcription factor (termed Mac-1-regulated forkhead [MFH] and foun...
متن کاملAll-trans retinoic acid reverses phorbol ester resistance in a human myeloid leukemia cell line.
Treatment of human HL-60 leukemic cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with activation of protein kinase C (PKC) and induction of monocytic differentiation. An HL-60 variant cell line, termed HL-525, derived from long-term exposure to TPA (Homma et al, Proc Natl Acad Sci USA 83: 7316, 1986) is resistant to TPA-induced differentiation and displays decreased PKC bet...
متن کاملInduction of the fibrinogen receptor on human platelets by intracellular mediators.
We have used platelets permeabilized with saponin to examine the mechanism by which platelet activation causes the exposure of surface receptors for fibrinogen. Receptor exposure was detected using 125I-fibrinogen and 125I-PAC1, a monoclonal antibody specific for the activated form of the fibrinogen receptor. The potential mediators that were studied included guanyl-5'-yl imidodiphosphate (Gpp(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 76 6 شماره
صفحات -
تاریخ انتشار 1990